微软官方MSDN原版Win10系统下载

现在位置: 首页  > 系统教程  > 系统帮助

七年级数学如何学好

时间:2024-11-23 10:58:02   

大家好,今天Win10系统之家小编给大家分享「七年级数学如何学好」的知识,如果能碰巧解决你现在面临的问题,记得收藏本站或分享给你的好友们哟~,现在开始吧!

七年级数学app系列软件最新版本下载

1.七年级如何学好数学


  把该信息分享到:适合学生:七年级(初一)学生
以下是关于的课程简介:初中数学是一个整体。八年级的难点最多,九年级的考点最多。相对而言,七年级数学知识点虽然很多,但都比较简单。很多同学在学习中感受不到压力,慢慢积累了很多小问题,这些问题在进入八年级,遇到困难(如学科的增加、难度的加深)后,就凸现出来。 现在八年级学生中,有一部分同学就是对七年级数学不够重视,在进入八年级后,发现跟不上老师的进度,感觉学习数学越来越吃力,这个问题究其原因,主要是对七年级数学的基础性,重视不够。这里先列举一下在七年级数学学习中经常出现的几个问题: 1、对知识点的理解停留在一知半解的层次上; 2、解题始终不能把握其中关键的数学技巧,孤立的看待每一道题,缺乏举一反三的能力; 3、解题时,小错误太多,始终不能完整的解决问题; 4、解题效率低,在规定的时间内不能完成一定量的题目,不适应考试节奏; 5、未养成总结归纳的习惯,不能习惯性的归纳所学的知识点; 以上这些问题如果在七年级阶段不能很好的解决,在八年级的两极分化阶段,同学们可能就会出现成绩的滑坡。相反,如果能够打好七年级数学基础,八年级的学习只会是知识点上的增多和难度的增加,在学习方法上同学们是很容易适应的。 那怎样才能打好七年级的数学基础呢? (1)细心地发掘概念和公式 很多同学对概念和公式不够重视,这类问题反映在三个方面:一是,对概念的理解只是停留在文字表面,对概念的特殊情况重视不够。例如,在代数式的概念(用字母或数字表示的式子是代数式)中,很多同学忽略了“单个字母或数字也是代数式”。二是,对概念和公式一味的死记硬背,缺乏与实际题目的联系。这样就不能很好的将学到的知识点与解题联系起来。三是,一部分同学不重视对数学公式的记忆。记忆是理解的基础。如果你不能将公式烂熟于心,又怎能够在题目中熟练应用呢? 我的建议是:更细心一点(观察特例),更深入一点(了解它在题目中的常见考点),更熟练一点(无论它以什么面目出现,我们都能够应用自如)。 (2)总结相似的类型题目 这个工作,不仅仅是老师的事,我们的同学要学会自己做。当你会总结题目,对所做的题目会分类,知道自己能够解决哪些题型,掌握了哪些常见的解题方法,还有哪些类型题不会做时,你才真正的掌握了这门学科的窍门,才能真正的做到“任它千变万化,我自岿然不动”。这个问题如果解决不好,在进入八年级、九年级以后,同学们会发现,有一部分同学天天做题,可成绩不升反降。其原因就是,他们天天都在做重复的工作,很多相似的题目反复做,需要解决的问题却不能专心攻克。久而久之,不会的题目还是不会,会做的题目也因为缺乏对数学的整体把握,弄的一团糟。 我的建议是:“总结归纳”是将题目越做越少的最好办法。 (3)收集自己的典型错误和不会的题目 同学们最难面对的,就是自己的错误和困难。但这恰恰又是最需要解决的问题。同学们做题目,有两个重要的目的:一是,将所学的知识点和技巧,在实际的题目中演练。另外一个就是,找出自己的不足,然后弥补它。这个不足,也包括两个方面,容易犯的错误和完全不会的内容。但现实情况是,同学们只追求做题的数量,草草的应付作业了事,而不追求解决出现的问题,更谈不上收集错误。我们之所以建议大家收集自己的典型错误和不会的题目,是因为,一旦你做了这件事,你就会发现,过去你认为自己有很多的小毛病,现在发现原来就是这一个反复在出现;过去你认为自己有很多问题都不懂,现在发现原来就这几个关键点没有解决。 我的建议是:做题就像挖金矿,每一道错题都是一块金矿,只有发掘、冶炼,才会有收获。 (4)就不懂的问题,积极提问、讨论 发现了不懂的问题,积极向他人请教。这是很平常的道理。但就是这一点,很多同学都做不到。原因可能有两个方面:一是,对该问题的重视不够,不求甚解;二是,不好意思,怕问老师被训,问同学被同学瞧不起。抱着这样的心态,学习任何东西都不可能学好。“闭门造车”只会让你的问题越来越多。知识本身是有连贯性的,前面的知识不清楚,学到后面时,会更难理解。这些问题积累到一定程度,就会造成你对该学科慢慢失去兴趣。直到无法赶上步伐。 讨论是一种非常好的学习方法。一个比较难的题目,经过与同学讨论,你可能就会获得很好的灵感,从对方那里学到好的方法和技巧。需要注意的是,讨论的对象最好是与自己水平相当的同学,这样有利于大家相互学习。 我的建议是:“勤学”是基础,“好问”是关键。 (5)注重实战(考试)经验的培养 考试本身就是一门学问。有些同学平时成绩很好,上课老师一提问,什么都会。课下做题也都会。可一到考试,成绩就不理想。出现这种情况,有两个主要原因:一是考试心态不不好,容易紧张;二是考试时间紧,总是不能在规定的时间内完成。心态不好,一方面要自己注意调整,但同时也需要经历大型考试来锻炼。每次考试,大家都要寻找一种适合自己的调整方法,久而久之,逐步适应考试节奏。做题速度慢的问题,需要同学们在平时的做题中解决。自己平时做作业可以给自己限定时间,逐步提高效率。另外,在实际考试中,也要考虑每部分的完成时间,避免出现不必要的慌乱。 我的建议是:把“做作业”当成考试,把“考试”当成做作业。 以上,就七年级数学经常出现的问题,谈了我个人的一些建议,但有一点要强调的是,任何方法最重要的是有效,同学们在学习中千万要避免形式化,要追求实效。任何考试都是考人的头脑,决不是考大家的笔记记的是否清楚,计划制定的是否周全。

2.怎样学好七年级数学


  王日高 广东省信宜市第六中学
在新课标的新理念下,我们看到传统的接受式教学模式已被生动活泼的数学活动所取代。
多数小学生刚进入初中学习后,对每件事物、每个学科都有着浓厚的兴趣,可是不少学生上数学课没多久,兴趣就逐渐消失,这几乎成了七年级数学教学者思考的普遍问题,长期以来,我们为保持和激发学生的学习兴趣进行不懈努力。
首先,要充分把握起始阶段的教学。“良好的开端是成功的一半”, 这是我们耳熟能详的教育指导思想。七年级学生翻开刚拿到的数学课本后,一般都感觉新奇、有趣,想学好数学的求知欲较为迫切。因此,教师要不惜花费时间,深下功夫,让学生在学习的起始阶段留下深刻的印象,产生浓厚的兴趣。
其次,求新、求活以保持课堂教学的生动性、趣味性。七年级数学比较贴进生活实际,具有很强的知识性、现实性和趣味性。因此,它以丰富的内容提供教学中诱发学生情趣和动机的酵母。新教材还抓住了七年级学生情绪易变、起伏较大的心理、生理特点,要求以:活的东西去教活的学生。来培养学生持久学习兴趣,全面提高他们的素质和能力。
由学习小学数学升级为学习初中数学是一个很大的转变过程。为了帮助同学们在学习七年级的数学过程中扫除障碍,引起同学们对七年级数学的重视,现在主要针对七年级数学的基础性,我们这里列举一下在七年级数学学习中经常出现的几个问题:
1、对知识点的理解一知半解;
2、解题不能总结归纳,不能举一反三;
3、未养成抄写错题簿的习惯;
4、不能主动积极提问、讨论;
(1)细心地发掘概念和公式
很多同学对概念的理解只是停留在文字表面,对概念的特殊情况重视不够。例如,在代数式的概念(用字母或数字表示的式子是代数式)中,很多同学忽略了“单个字母或数字也是代数式”。有些同学不重视对数学公式的记忆。记忆是理解的基础。如果你不能将公式烂熟于心,是不能够在题目中熟练运用的。
我们的建议是:细心观察例题,深入了解常见考点,熟记概念,烂熟公式。
(2)总结相似的类型题目
当你会总结题目,会分类题目时,你才真正的掌握了这门学科的窍门,才能真正的做到“任它千变万化,我自岿然不动”。有一部分同学天天做题,可成绩不升反降。其原因就是,他们天天都在做重复的工作,很多相似的题目反复做,需要解决的问题却不能专心攻克。久而久之,不会的题目还是不会,会做的题目也因为缺乏对数学的整体把握,弄的一团糟。
我们的建议是:“总结归纳,举一反三”是将题目越做越少的最好办法。
(3)建立错题簿,收集错误
同学们最难面对的,就是自己的错误与失败。但这恰恰又是最需要解决的问题。同学们做题目,有两个重要的目的:一是,将所学的知识点和技巧在实际的题目中演练。另外一个就是,找出自己的不足,然后弥补它。这个不足,也包括两个方面,容易犯的错误和完全不会的内容。但现实情况是,同学们只追求做题的数量,草草的应付作业了事,而不追求解决出现的问题,更谈不上收集错误。我们之所以建议大家收集自己的典型错误和不会的题目,就是因为要避免下次不再出现类似的错误。
我们的建议是:做题就像挖金矿,每一道错题都是一块金矿,只有发掘、冶炼,才会有收获。
(4)就不懂的问题,要积极提问、讨论
很多同学都不能做到不懂就问。原因可能有两个方面:一是,对该问题的重视不够,不求甚解;二是,不好意思,怕问老师被训,问同学被同学瞧不起。抱着这样的心态,学习任何东西都不可能学好。“闭门造车”只会让你的问题越来越多。讨论是一种非常好的学习方法。一个比较难的题目,经过与同学讨论,你可能就会获得很好的灵感,从对方那里学到好的方法和技巧。
我们的建议是:“兴趣”是前提,“勤学”是基础,“好问”是关键。
以上,我就七年级数学经常出现的问题,给出了建议,希望能对同学们今后的学习起到一定的帮助。

3.如何学好数学?(我现在是7年级)


  怎样学好数学 <1>真正了解数学定义,千万不要有似是而非。 <2>培养解题的逻辑思维,明白从何入手。. 从条件入手:了解题目中的条件的作用,以及他们起来的作用,快速地推测由此能得到的结论和结果。进而结合并列的条件得出更进一步的结论,并最终解决问题。 从结果入手:当不能确定条件的作用的时候,可以考虑从结果入手,首先必须结合题目的非条件部分,想到可以得到此结论的可能的必要条件。然后由此推进到题目所给的原始条件,解决问题。 〈3〉培养良好的数学精神 首先,在立足结论和答案的基础上,仔细深入地了解解题的过程,自己是否真的知道各个结论的得来,如果不明白,千万不要庆幸自己得到的答案,而应该自己再次地去解答或者询问老师或同学。要求每一步都必须有严谨的推导依据,或是定理或是公理,决不要想当然。不就问,这一点对于学习数学非常重要,培养良好的数学精神就必须多问。 〈4〉选择难度适中的题目训练自己。 习题的选择有两点要求:广度和经度。根据课本知识和教师讲课内容,总结出学习的重点,听老师讲.看同学做是一个很好的节省时间的方法。同时要求对学过的知道点都必须照顾到,每一个知道点都应该练习,如果知识点较简单就可以选择难度教大的习题,相应如果难度大,就应该选择难度适中的习题,没有必要太难,并做到多练。 经典的习题总是包含较多的知识点,要求做题者具有较强的综合能力及数学思维,能够很好地利用条件。它的难度并不是很大,但要求有很强的洞察力和决策能力,对结论条件同时推进,然后在某个地方会合,解决问题。 〈5〉培养数学兴趣 千万不要认为数学难题是科学家,最多也只到老师那一级。其实并非如此任何人都应该用一种怀疑的眼光去看整个世界。不要怀疑自己的不同意见,在经过自己判断后,仍然有异议,就应该勇敢地提出来,不要因为自己一两次的失误就放弃自己的独立见解。这不仅仅是解题的重点,更是良好的生活习惯培养的重点。没有怀疑就没有创新。 许多同学对数学没有兴趣是因为自己曾经在考试中没有考好,因此否定自己,甚至放弃数学。所以必须端正对考试的看法,它只是教师和同学自己检验自己的学习状况的方法,自己在哪个地方失败了,就在哪个地方爬起来。自己是否是因为粗心大意,还是因为确实没有掌握,无论是因为什么,没有关系。粗心一般是由于平时没有养成良好的习惯,于是在考试时思维不集中,没有仔细地思考就轻易地作答,错误就在所难免了。而另外一点就更加容易,只要再多花一点时间去复习,就可以杜绝它的再次发生。只要养成良好的数学精神和思维就可以在考试中大展身手了。 学习数学不单单是要学会解题,更重要的是学会观察生活,改善生活。培养对生活的观察能力和兴趣,在自己将来的生活就会受益无穷的。将来的社会要求的是会出题的人才而不是仅仅会解题的书呆子。只会解题的人永远是落后的,没有创造力,没有竞争力。多做题 多练习 多问老师 要有个好的心态 别给自己太多压力 还可以去看看高中的复习题多和老师同学交流,增加对数学的兴趣1.我不否认数学好与天才有关,但数学好并非是天才的专利. 2.数学考察的是反应的灵敏度,也就是我们通常说的数学意识,我们要在瞬间联想到一切与之相关的知识点才能做好一道题.这既是数学难学的地方,但它又恰恰是它的放光点. 3.学好数学首先一点是要焖心自问,自己是否是真心的想要学好它,如果你真的能做到这一点,那么你就成功了五分之一. 4.付诸实践."有志者,事竟成,破釜沉舟,百二秦关终属楚.苦心人,天不负,卧薪尝胆,三千越甲可吞吴."也就是说从现在开始努力.我可以给你介绍几种方法:a.提前预习.至少比老师的进度快两倍,同时搞懂课后习题,切记不懂就问.b.向老师咨询,买一至二套适合自己的卷子,当然如果幸运的话你的老师会把自己出的一些卷子给你.c.要有意识地做题,学会举一反三,尝试着去举一反三,联系几何与代数知识综合运用(主要是应用几何知识解决代数问题)d.学会记笔记,并非数学题每一个步骤都要记,而是要记的越简略越清晰越好,同时记完一道题后要停下来想想,总结出规律,写下标注. 5.数学学习和考试又有些不同,考试需要一种亢奋的状态,但做题时又要使内心静若止水,冷静审题,灵活答题,学会放弃,不要因小失大. 最后,祝你成功.送你一句话"没有什么事是不可能的"希望你选我的答案,谢谢!~

4.七年级的数学到底该怎么学啊?


  1、 多位数各数位之间是相加的关系:有个别同学以为351这个数中,300 和50之间是相乘的关系,但300 50 = 1500 ,1500 显然不等于351 ,实际上它们之间是相加的关系:351 = 300 + 50 + 1 , 百位上的数字是3 ,它表示的是3个百,因此它应该乘以 100 ,即 351 = 3 100 + 5 10 + 1 1 ,以此类推,若一个数的个位上是c ,十位上是b ,百位上是 d , 万位上是 a ,那么这个数应该是多少呢?是10000a + 100d +10b + c ,也就是说,任何数位上的数字都只可能是0 ~ 9 中的一个!
44444的各个数位上都是4 ,但是各个 4 表示的意思却不一样!!!
2、 数 + 单位名称 = 名数,只带有一个单位名称的叫单名数,带有两个或两个以上单位名称的叫复名数,比如 8 吨 3 千克 , 4 元 5 角 8 分 , 5 平方米 6 平方厘米 ,
3 年 6 个月 , 5 立方米 12 立方厘米 , 3 米 4 厘米 2 毫米 …… 等等,实际
上,我们经常接触的整数、小数、带分数等等,也可以看成是复名数,在复名数中,高级单位和低级单位之间是相加的关系.即 8 吨 3 千克 =8 吨 +3 千克 
4 元 5 角 8 分 = 4元 +5角 +8分 3 年 6 个月= 3年 + 6个月
 3 米 4 厘米 2 毫米 =3 米 +4 厘米 +2毫米
3、整数与分数相乘时,整数要与分子相乘,比如: 
4、负数各单位之间是相加的关系:—120=—100 + (—20)
5、在任何一个代数式中,通常把各个单项式或加数的括号和它前面的加号省略不写,改写成省略加号的和的形式,若最前面的第一项是正号也省略不写,比如下面这个式子:
5—7 表示 (+5)+(—7) 3a — 2b表示 (+3a)+(—2b)
6、当一个数字与一个或多个字母相乘时,乘号省略不写,并且把数字写在前面,数字与字母之间是相乘的关系。字母与字母相乘时,省略乘号,直接写在一起。比如当7、a、b连乘时,等于7ab , ,数字与字母之间实际上是相乘的关系。
7、由数字与字母的乘积组成的代数式叫单项式,即没有加减符号连接的代数式,单项式内部是一种连乘的关系,比如 , 
8、单项式的系数为1时,通常省略不写,比如 1 m 就写成m ;ab2表示此单项式的系数为1 ,即ab2 = 1 ab2 ;单项式的系数为—1时,省写为“ — ” ,比如
—1 m就写成—m ;—ab2表示此单项式的系数为—1 ,即—ab2 = (—1) ab2 。
9、多项式内部是一种混合运算关系,比如: 
10、加法、减法、乘法、除法的结果分别叫做和、差、积、商,而第五种运算方法“乘方”法的结果叫做“幂” ,当幂指数为1 时通常省略不写,比如 : ,
 , 
11、—a 表示a 的相反数,—(a+b)表示a+b的相反数,
—a2表示a2的相反数, (—a)2表示两个 —a 连乘 , 
12、 
相等的两个数或式子的差为零。
13、 0 —1 = 0 + (—1) (减去一个数,等于加上这个数的相反数)
 = —1
 0 — a = —a 0 — 3ab2 = —3ab2
0减去任何数都等于这个数的相反数。
14、0 + a = a 0 + 3ab2 = 3ab2 5a2 + 0 = 5a2
任何数与零相加都等于它本身。
15、对一个正实数进行开平方时,根指数2通常省略不写, 表示对81开平方,就是要求81的算术平方根, 表示的就是a的算术平方根(正的那个平方根)。
1、有理数按符号分为正有理数(简称正数)、0 、负有理数(简称负数),我们平常所说的数就是有理数的简称,一个数就是 一个有理数。0既不是正数,也不是负数,是一个中性数。
2、有理数的正确译法应该是“比数”,任何一个有理数都可以表示成两个整数的比,因此有理数按形式还可以分为整数和分数两种。不能表示成两个整数的比的数,肯定不是有理数。分数是标准的有理数。
3、非负数是正数和0 的合称,有理数分为负数和非负数,因此一个数不是正数就是负数的说法是错误的,还可能是0。常见的非负数有一个数的绝对值、有理数的偶次幂等。
4、一个数 a 的绝对值就是数轴上表示数 a 的点与原点的距离。绝对值的本质是一种距离,其值是一个非负数。
5、倒数和相反数都表示的是两个数之间的关系,互为倒数的两个数同号(同正或同负),乘积为1 ;互为相反数的两个数绝对值相等(即到原点的距离相等),和为0 。
6、有理数的减法法则:减去一个数,等于加上这个数的相反数。
7、几个有理数相加减,我们通常写成省略加号的和的形式。
8、有理数的除法法则:除以一个数,等于乘上这个数的倒数。
9、任何一个有理数的偶次幂都是一个非负数。
10、求几个相同因数的积的简便运算叫乘方,它是继加、减、乘、除法之后的第五种运算法。
11、乘方的结果叫幂。乘方的意义:求一个数的几次方,就是求几个这样的数连乘的积。底数是因数,指数表示因数的个数。
12、用加、减、乘、除、乘方、开方等数学符号,把数和表示数的字母连接起来的式子叫代数式。
13、由数字与字母的乘积组成的代数式叫单项式,即没有加减符号连接的代数式,字母可以有多个,字母的次数也可以为任意正整数。
14、单项式的系数为1或—1时,通常省略不写。单独的一个数或字母也是单项式。
15、单项式中的数字因数叫做这个单项式的系数;所有字母的指数的和叫做这个单项式的次数。
16、几个单项式的和叫多项式。(几个单项式的差也叫做多项式,因为减法的本质也是加法)
17、在多项式中,每个单项式叫做多项式的项,有几个单项式,就叫有几项;不含字母的项叫常数项。
18、多项式里次数最高项的次数,就是这个多项式的次数。(请注意多项式的次数不是所有项的次数之和,每一项都包括它前面的符号)
19、单项式与多项式统称为整式。
20、所含字母相同,并且相同字母的指数也相等的单项式叫同类项。所有的常数项都是同类项。
21、合并同类项的法则:把同类项的系数相加,结果作为系数,字母和字母的指数保持不变。
1、 乘方的意义:乘方是加、减、乘、除后的第五种运算方法,加减法有明显的运算符号,“+”和“—” ,乘除法也有较明显的运算符号,但乘方的运算符号不太明显,只是在书写及两数的位置关系上不同于其他运算方法。
 乘方 是求多个相同因数的乘积的运算方法,书写的时候,把因数写在正常位置,把因数的个数写在因数的右上角。 加法的结果叫做和,减法的结果叫做差,乘法的结果叫做积,除法的结果叫做商, 乘方的结果叫做幂。 35 读作3的5次幂或3的5次方。
 要求a与b的和,用加法,结果a+b是个和的形式;要求a与b的差,用减法,结果a—b是个差的形式;
 要求a与b的积,用乘法,结果ab是个积的形式; 要求a与b的商,用除法,结果 是个商的形式;
 要求a个b连乘,用乘方(法),结果 是个幂的形式。***在一个幂的形式中,因数叫做底数,因数的个数叫做指数。
 求一个数的几次方,就是求几个这样的数连乘的积。底数是因数,指数表示因数的个数。 
2、多个相同因数的乘积可以用乘方法进行运算,多个相同整式的乘积照样可以用乘方的方法进行运算。意义与数的乘方是相同的。(x—y)3表示3个(x—y)连乘。 
一、数
1、自然数:用来表示物体个数的1、2、3、4、5……叫做自然数,1是自然数的基本组成单位。最小的一位数是1。
2、一个物体都没有用0表示,0也是自然数,但最小的一位数是1。
3、整数:正整数、0、负整数统称整数.正整数和0也叫做自然数。
4、分数:把单位“1”平均分成若干份,表示其中一份或者几份的数,叫做分数。(分数还表示把一个数平均分成若干份,表示其中一份的数。分数分为真分数和假分数。)
5、小数:把一个整体平均分成10份、100份、1000份……表示这样的1份或几份的数是十分之几、百分之几、千分之几……用来表示十分之几、百分之几、千分之几……的数就叫小数。
注:根据小数部分的位数,小数可分成“有限小数”和“无限小数”两类 ;
 有限小数按整数部分分类可分为纯小数和带小数两类,纯小数指整数部分是0的小数,如:0.25 、0.3 、 0.48 、0.56等,纯小数都比1小 ;带小数指整数部分不为0的小数,如:2.51 、3.4 、 5.91 、49.8等,带小数都比1大。
 无限小数分为无限循环小数和无限不循环小数。循环节从小数部分第一位开始的叫做纯循环小数,不从第一位开始的叫做混循环小数。写循环节时,只在首位和末位数字上各点一个小圆点。
6、倍数(约数):整数a除以整数b(b≠0),除得的商正好是整数而没有余数,我们就说a能被b整除。其中a就叫做b的倍数,b就叫做a的约数。
7、质数:一个数,如果只有1和它本身两个约数,这个数就叫做质数。(最小的质数是2)
8、合数:一个数,如果除了1和它本身,还有别的约数,这个数就叫做合数。最小的合数是4)
9、质因数:每个合数都可以写成几个质数相乘的形式,其中每个质数都是这个合数的因数,叫做这个合数的质因数。
10、公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数。几个数没有最大的公倍数。
11、公约数:c反数。**不是一种数,是关系。
二、运算方法
1、加法:把两个或多个数合并成一个数的方法叫做加法。(加数、和)
2、减法:已知两个加数的和与其中的一个加数,要求另一个加数的方法叫做减法。(被减数、减数、差)
3、乘法:求多个相同加数的和的简便运算方法叫做乘法。(因数、积)
4、除法:已知两个因数的积与其中的一个因数,要求另一个因数的方法叫做除法。(被除数、除数、商、余数)
三、运算律( 只对加法和乘法而言)
1、加法交换律: 
2、加法结合律: 
3、乘法交换律: 
4、乘法结合律: 
5、乘法(对加法的)分配律: 
四、运算顺序
 先算三级运算乘方、开方,再算二级运算乘除,最后算一级运算加减,如果有括号,按照小、中、大的顺序进行运算,同级运算必须从左到右依次进行。
五、100以内质数表(共25个)
2 、3 、5 、7 、11 、13 、17 、19 、23 、29 、31 、37 、41 、43 、47 、53 、59 、61 、67 、71 、73 、79 、83 、89 、97
六、常见的运算结果
显示不出来,主要是常见的分数小数互化,还有2、3、4、5、6的各阶幂结果等等。
七、闰年的来历
关于公历闰年是这样规定的:地球绕太阳公转一周叫做一回归年,一回归年不是整365天而是365日5时48分46秒。因此,公历规定有平年和闰年,平年一年有365日,比回归年短0.2422日,四年共短0.9688日,故每四年增加一日,这一年有366日,就是闰年。但四年增加一日比四个回归年又多0.0312日,400年后将多3.12日,故在400年中少设3个闰年,也就是在400年中只设97个闰年,这样公历年的平均长度与回归年就相近似了。由此规定:年份是整百数的必须是400的倍数才是闰年,例如1900年、2100年就不是闰年。

5.怎样才能把初一的数学学好?


  1,数学的基础很重要,数学这门课的特点是连惯性太强,每一个知识点就象我们上楼的每一级台阶,你某一个知识点没学好,就象那里少了一级台阶。有的同学说,老师在课堂上讲我能听得懂,为什么做题时就是做不出来呢?这是因为课堂上老师讲好比开着灯上楼梯,虽然有一两级台阶没有(只要它们不连惯)还是能上去的,但做作业或考试时就象关着灯上楼梯,完全凭感觉走,没有任何人帮你指出哪里没有台阶,所以走到断级的时候不跌到才怪。那这种情况怎么办呢?唯一的办法只有把缺少了的那级台阶补上去。其方法就是一定要抽出时间去看以前的课本,如果你拿某一本旧课本来看还是看不懂,那说明你要补的还在前面,暂时把这本书放下,去看更前面的旧课本。只到你能完全弄明白了为止,然后从这一本书一直往后看,直到你现在所学的课本。我个人认为这比你为了完成任务而做作业重要得多,这才是你跟得上课程的根本保证。我有一个外孙女就是这种情况。有一次她拿一道数学题来问我,那道题有四个知识点,我问她,她竟然一个都回答不了,我叫她先去看以前的课本上的相应部分再来做这个题,她竟然去问同学去了,结果当然是不了了之的把答案抄了一遍,完成了作业。还说我不如她的同学厉害,我只有苦笑(在这里我不由的又要报怨现在的教育起来了,作业,作业,做孽,对优生是一条拖后腿的绳,对差生是套牢脖子的绳。当年我就是经常没能完成作业而。。。这是题外话不说也罢)依我的看法,对于所谓的差生来说,花时间去学习以前被遗忘了的知识点比做作业要重要得多。当然我不是在这叫大家都不要做作业,而是说要花适当的时间去自己给自己补课。
2,要学好数学,兴趣最关键,人人都这么说。但归根到底还是基础要好才可能产生兴趣,一个人不可能对那个让自己陷入困境的事情产生兴趣。所以成绩不好的同学还是要把时间多花在第一步上。如果你是一名中学生,那么小学课本应当能看懂吧,你能看懂它,做小学的一些奥数题你一定会觉得其乐无穷。这样你就能培养起对数学的兴趣了。有了光趣还有什么做不好呢!
3,数学不是靠的死记硬背,要理解,怎样理解呢,还是在基础,所以成绩不好的同学还是要多把时间花在第一步上。对于公式的记忆呢,只要求能记住最基本的就行了,其余的要学会自己推导出来,发明狂当年很多公式都记不住,但我能在考场上花上一两分钟就把需要的公式当场推导出来,这比你花死力气去死记要保险得多,而且绝对准确,这就叫做理解记忆,发明狂与课本无缘已有一二十年了,但做题时所要的公式还是能根据它的定义把它推导出来。所谓好钢用在刀刃上,就是这个意思,不要把时间花在毫无意义的事情上,死记硬背是靠不住的,关键时刻最容易出乱子,你一下子想不起,或对一个符号不敢确定,这一题就完了,而自己会推导就不一样了,一本书你要记的不过几个公式而已,从小学到高中真正要记忆的公式恐怕不会超过二十个吧。比如:面积公式,只要记住矩形和圆的面积公式就行了。矩形面积=底X高(S=ab)。三角形面积如何从这推导呢?在矩形中划一条对角线,是不是得两个面积一样大的三角形?那当然就有:(S=ab/2)那梯形呢?在梯形中划一条对角线,是不是得两个三角形?而且它们的高相等?根据三角形面积公式就有S=ah/2+bh/2=(a+b)h/2。有一点要说的是你在推导公式时用特殊的情况就行了,因为你不是证明。发明狂已多年没接触课本了,对课本都已不了解了,如有什么问题大家可以共同探讨,共同进步。
4,要多做题,多思考,才能打开思维面。上面我反对作业不是叫你不要做作业,而是反对浪费时间去做那些对你来说一看就会毫无意义的作业。你应当把这钟时间花在做真正要做的题目上。如果你确实觉得做作业是浪费时间,你可以向老师申请不做作业。我想老师应当同意的(你们现在的老师应当比我们那时的老师开明得多了吧?)
5,碰到好的题目时,要多思考一个问题:那就是——这个题是怎样提出来的?你能不能出一个相类似的题、或比它有所改变的题、或者有所提高的题。这样下次碰到这一题或与它相类似的题时你就能很容易的做出来了。这也是训练发散思维的好方法。也是发明家最重要的思维方式了。 
6,认真听讲,有不懂的问题及时向老师或同学请教,只到弄懂为止,孔子都不耻下问呢,何况我们!
7,信心很重要,要相信自己一定能行才会成功。废话就不多说了,最后希望你爱上数学,这样你一定会觉得数学是那样的其乐无穷了。还愁学不好数学?祝你成功。

6.初一数学 怎样才能学好


  怎样学好数学的是十三种好习惯
方法
1、认真“听”的习惯。
为了教和学的同步,教师应要求学生在课堂上集中思想,专心听老师讲课,认真听同学发言,抓住重点、难点、疑点听,边听边思考,对中、高年级学生提倡边听边做听课笔记。
2、积极“想”的习惯。
积极思考老师和同学提出的问题,使自己始终置身于教学活动之中,这是提高学习质量和效率的重要保证。学生思考、回答问题一般要求达到:有根据、有条理、符合逻辑。随着年龄的升高,思考问题时应逐步渗透联想、假设、转化等数学思想,不断提高思考问题的质量和速度。
3、仔细“审”的习惯。
审题能力是学生多种能力的综合表现。教师应要求学生仔细阅读教材内容,学会抓住字眼,正确理解内容,对提示语、旁注、公式、法则、定律、图示等关键性内容更要认真推敲、反复琢磨,准确把握每个知识点的内涵与外延。建议教师们经常进行“一字之差义差万”的专项训练,不断增强学生思维的深刻性和批判性。
4、独立“做”的习惯。
练习是教学活动的重要组成部分和自然延续,是学生最基本、最经常的独立学习实践活动,还是反映学生学习情况的主要方式。教师应教育学生对知识的理解不盲从优生看法,不受他人影响轻易改变自己的见解;对知识的运用不抄袭他人现成答案;课后作业要按质、按量、按时、书写工整完成,并能作到方法最佳,有错就改。
5、善于“问”的习惯。
俗话说:“好问的孩子必成大器”。教师应积极鼓励学生质疑问难,带着知识疑点问老师、问同学、问家长,大力提倡学生自己设计数学问题,大胆、主动地与他人交流,这样既能融洽师生关系,增进同学友情,又可以使学生的交际、表达等方面的能力逐步提高。
6、勇于“辩”的习惯。
讨论和争辩是思维最好的媒介,它可以形成师生之间、同学之间多渠道、广泛的信息交流。让学生在争辩中表现自我、互相启迪、交流所得、增长才干,最终统一对真知的认同。
7、力求“断”的习惯。
民族的创新能力是综合国力的重要表现,因此新大纲强调在数学教学中应重视培养学生的创新意识。教师应积极鼓励学生思考问题时不受常规思路局限,乐于和善于发现新问题,能够从不同角度诠释数学命题,能用不同方法解答问题,能创造性地操作或制作学具与模型。
8、提早“学”的习惯。
从小学生认识规律看,要获得良好的学习成绩,必须牢牢抓住预习、听课、作业、复习四个基本环节。其中,课前预习教材可以帮助学生了解新知识的要点、重点、发现疑难,从而可以在课堂内重点解决,掌握听课的主动权,使听课具有针对性。随着年级的升高、预习的重要性更加突出。
9、反复“查”的习惯。
培养学生检查的能力和习惯,是提高数学学习质量的重要措施,是培养学生自觉性和责任感的必要过程,这也是新大纲明确了的教学要求。练习后,学生一般应从“是否符合题意,计算是否合理、灵活、正确,应用题、几何题的解答方法是否科学”等几个方面反复检查验算。
10、客观“评”的习惯。
学生客观地评价自己和他人在学习活动中的表现,本身就是一种高水平的学习。只有客观地评价自己、评价他人,才能评出自信,评出不足,从而达到正视自我、不断反思、追求进步的目的,逐步形成辩证唯物主义认识观。
11、经常“动”的习惯。
数学知识具有高度的抽象性,小学生的思维带有明显的具体性,所以新大纲强调应重视从学生的生活经验中学习理解数学,加强实践能力的培养。在教学中,教师应强调学生手脑并用,以动促思,对难以理解的概念通过举实例加以解决,对较复杂的应用题通过画图找到正确的解答方法,对模糊的几何知识通过剪剪拼拼或实验达到投石问路的目的。
12、有心“集”的习惯。
学生在学习活动中犯错并不可怕,可怕的是同一问题多次犯错。为避免同一错误经常犯,有责任民的教师在教室里布置了错会诊专栏,有心计的学生建立错误的知识档案,将平时练习或考试中出现的错题收集在一起,反复警示自己,值得提倡。
13、灵活“用”的习惯。
学习的目的在于应用,要求学生在课堂上学到的知识加以灵活运用,既能起到巩固和消化知识的作用,又有利于将知识转化成能力,还能达到培养学生学习数学的兴趣的目的。

以上就是关于「七年级数学如何学好」的全部内容,本文讲解到这里啦,希望对大家有所帮助。如果你还想了解更多这方面的信息,记得收藏关注本站~

Win10系统之家www.ghoSt580.Net①文章,转载请联系网站管理人员!

相关文章

  • 如何学好九年级数学

    如何学好九年级数学

    1.如何学好初三数学如何学好初三数学,是摆在即将升入新初三学生面前的一个难题。其实,学好数学并不难!一、课本要“预、做、复”。每堂新课之前,做到先预习,特别要把难点或不懂之处用彩笔划出,以便上课时更加注意。每节内容...
  • 如何学好八年级数学

    如何学好八年级数学

    1.怎么才能学好初二数学怎样才能学好数学★怎样才能学好数学?要回答这个似乎非常简单:把定理、公式都记住,勤思好问,多做几道题,不就行了。事实上并非如此,比如:有的同学把书上的黑体字都能一字不落地背下来,可就是不会...
  • 如何快速学好篮球

    如何快速学好篮球

    1.如何学好篮球?不知道你说的要打好是个什么程度?是为了让别人看你打篮球比较精彩,还是说你打的篮球比较有效,容易得分(虽然动作可能不怎么好看)。要是为了华丽让别人看,那场上最容易表现的位置就是后卫了,往往后卫比...
  • 初中数学如何预习

    初中数学如何预习

    1.怎样进行初中数学预习检查初中数学如何进行课前预习新课程的标准下,如何提高学生的学习效率,课前预习是必不可少的.如果课前预习的好,课上同学门带着问题进入课堂,就会有一种想学、想问、想练的良好心理,课上老师所...